Home
Class 12
MATHS
If omega is a complex cube root of unit...

If `omega` is a complex cube root of unity, then `(1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=`

A

0

B

6

C

64

D

128

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((1 - \omega + \omega^2)^6 + (1 - \omega^2 + \omega)^6\), where \(\omega\) is a complex cube root of unity. ### Step-by-Step Solution: 1. **Understanding the properties of cube roots of unity**: - The cube roots of unity are \(1\), \(\omega\), and \(\omega^2\) where \(\omega = e^{2\pi i / 3}\). - The properties we need are: \[ 1 + \omega + \omega^2 = 0 \quad \text{and} \quad \omega^3 = 1. \] 2. **Simplifying \(1 - \omega + \omega^2\)**: - We can rewrite \(1 - \omega + \omega^2\) using the property \(1 + \omega + \omega^2 = 0\): \[ 1 - \omega + \omega^2 = 1 + \omega^2 - \omega = (1 + \omega + \omega^2) - 2\omega = -2\omega. \] 3. **Calculating \((1 - \omega + \omega^2)^6\)**: - Now we can compute: \[ (1 - \omega + \omega^2)^6 = (-2\omega)^6 = (-2)^6 \cdot \omega^6 = 64 \cdot 1 = 64. \] 4. **Simplifying \(1 - \omega^2 + \omega\)**: - Similarly, we simplify \(1 - \omega^2 + \omega\): \[ 1 - \omega^2 + \omega = 1 + \omega - \omega^2 = (1 + \omega + \omega^2) - 2\omega^2 = -2\omega^2. \] 5. **Calculating \((1 - \omega^2 + \omega)^6\)**: - Now we compute: \[ (1 - \omega^2 + \omega)^6 = (-2\omega^2)^6 = (-2)^6 \cdot (\omega^2)^6 = 64 \cdot 1 = 64. \] 6. **Final Calculation**: - Now we can sum the two results: \[ (1 - \omega + \omega^2)^6 + (1 - \omega^2 + \omega)^6 = 64 + 64 = 128. \] ### Final Answer: Thus, the value of \((1 - \omega + \omega^2)^6 + (1 - \omega^2 + \omega)^6\) is \(\boxed{128}\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))

omega is a complex cube root of unity,then (1-omega)(1-+-ega^(2))(1-omega^(4))(1-omega^(8))

If omega is a complex cube root of unity,then (x-y)(x omega-y)(x omega^(2)-y)=

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega is a complex cube root of unity,show that ([1 omega omega^(2)omega omega^(2)1 omega^(2)1 omega]+[omega omega^(2)1 omega^(2)1 omega omega omega^(2)1])[1 omega omega^(2)]=[000]

If omega is complex cube root of unity then (3+5 omega+3 omega^(2))^(2)+(3+3 omega+5 omega^(2))^(2) is equal to

If omega is complex cube root of unity then (3+5 omega+3 omega^(2))^(2)+(3+3 omega+5 omega^(2))^(2) is equal to

If omega is complex cube root of unity (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Exercise
  1. If the roots of (z-1)^n=i(z+1)^n are plotted in ten Argand plane, then...

    Text Solution

    |

  2. Area of the triangle formed by 3 complex numbers, 1+i,i-1,2i, in the A...

    Text Solution

    |

  3. If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6...

    Text Solution

    |

  4. The locus represented by the equation |z-1| = |z-i| is

    Text Solution

    |

  5. If z=i log(23,t h e ncosz= -1 b. -1//2 c. 1 d. 1//2

    Text Solution

    |

  6. If alpha=cos alpha+i sin alpha, b=cos beta+isin beta,c=cos gamma+i sin...

    Text Solution

    |

  7. lf z1,z2,z3 are vertices of an equilateral triangle inscribed in the c...

    Text Solution

    |

  8. The general value of theta which satisfies the equation (costheta+isin...

    Text Solution

    |

  9. If z is a complex numbers such that z ne 0 and "Re"(z)=0, then

    Text Solution

    |

  10. If z + z^(-1)= 1, then find the value of z^(100) + z^(-100).

    Text Solution

    |

  11. Let A,B and C represent the complex number z1, z2, z3 respectively on ...

    Text Solution

    |

  12. Number of solutions of the equation z^(2)+|z|^(2)=0, where z in C, is

    Text Solution

    |

  13. The number of solutions of the equation z^2+z=0 where z is a a complex...

    Text Solution

    |

  14. The centre of a square is at the origin and one of the vertex is 1-i e...

    Text Solution

    |

  15. Let za n domega be two complex numbers such that |z|lt=1,|omega|lt=1a ...

    Text Solution

    |

  16. The system of equation |z+1+i|=sqrt2 and |z|=3}, (where i=sqrt-1) ha...

    Text Solution

    |

  17. The triangle with vertices at the point z1z2,(1-i)z1+i z2 is

    Text Solution

    |

  18. Let alpha and beta be two fixed non-zero complex numbers and 'z' a var...

    Text Solution

    |

  19. The center of a square is at z=0. A is z(1), then the centroid of the ...

    Text Solution

    |

  20. If z=x+i y , then he equation |(2z-i)//(z+1)|=m represents a circle, t...

    Text Solution

    |