Home
Class 12
MATHS
The general value of theta which satisfi...

The general value of `theta` which satisfies the equation `(costheta+isintheta)(cos3theta+isin3theta) (cos5theta+isin5theta)…………((cos2n-1)theta+isin(2n-1)theta)` = 1 is

A

`(rpi)/n^(2)`

B

`((r-1)pi)/(n^(2))`

C

`((2r+1)pi)/(n^(3))`

D

`(2rpi)/n^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ (\cos \theta + i \sin \theta)(\cos 3\theta + i \sin 3\theta)(\cos 5\theta + i \sin 5\theta) \ldots (\cos (2n-1)\theta + i \sin (2n-1)\theta) = 1, \] we can follow these steps: ### Step 1: Rewrite the terms using Euler's formula Using Euler's formula, we can rewrite each term as: \[ \cos k\theta + i \sin k\theta = e^{ik\theta}. \] Thus, the left-hand side becomes: \[ e^{i\theta} \cdot e^{i3\theta} \cdot e^{i5\theta} \cdots e^{i(2n-1)\theta}. \] ### Step 2: Combine the exponents The product of the exponentials can be combined: \[ e^{i(\theta + 3\theta + 5\theta + \ldots + (2n-1)\theta)} = e^{i\left(\sum_{k=0}^{n-1} (2k+1)\theta\right)}. \] ### Step 3: Calculate the sum of the series The sum of the series \(1 + 3 + 5 + \ldots + (2n-1)\) is known to be \(n^2\). Therefore, we can write: \[ \sum_{k=0}^{n-1} (2k+1) = n^2. \] Thus, we have: \[ e^{i(n^2 \theta)}. \] ### Step 4: Set the equation equal to 1 We now set the expression equal to 1: \[ e^{i(n^2 \theta)} = 1. \] ### Step 5: Solve for \(\theta\) The equation \(e^{i(n^2 \theta)} = 1\) implies that: \[ n^2 \theta = 2k\pi, \] where \(k\) is any integer. ### Step 6: Isolate \(\theta\) Dividing both sides by \(n^2\), we find: \[ \theta = \frac{2k\pi}{n^2}. \] ### Conclusion Thus, the general value of \(\theta\) that satisfies the original equation is: \[ \theta = \frac{2k\pi}{n^2}, \quad k \in \mathbb{Z}. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

(cos3theta+isin3theta)^5/(costheta+isintheta)^6

Find the general value of theta which satisfies the equation (cos theta+i sin theta)(cos2 theta+i sin2 theta)......(cos n theta+i sin n theta)=1

Among given values of theta which one satisfies the equation (cos theta)/(1- sin theta) -(cos theta)/(1 + sin theta) =2 ?

Show that, ((cos2theta+isin2theta)^3(cos3theta-isin3theta)^4)/((cos3theta+isin3theta)^2(cos4theta+isin4theta)^(-3))=1

Find the general values of theta which satisfies the equation tan theta =-1 and cos theta =(1)/(sqrt(2))

costheta.cos2theta.cos3theta=1/4

int(costheta-cos2theta)/(1-cos theta)d theta=

Simplify : ((cos3theta+isin3theta)^7(cos5theta-isin5theta)^4)/((cos4theta+isin4theta)^10(cos13theta-isin13theta)^3)

Find the general value of theta from the equation costheta+cos2theta + cos3theta=0 .

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Exercise
  1. If alpha=cos alpha+i sin alpha, b=cos beta+isin beta,c=cos gamma+i sin...

    Text Solution

    |

  2. lf z1,z2,z3 are vertices of an equilateral triangle inscribed in the c...

    Text Solution

    |

  3. The general value of theta which satisfies the equation (costheta+isin...

    Text Solution

    |

  4. If z is a complex numbers such that z ne 0 and "Re"(z)=0, then

    Text Solution

    |

  5. If z + z^(-1)= 1, then find the value of z^(100) + z^(-100).

    Text Solution

    |

  6. Let A,B and C represent the complex number z1, z2, z3 respectively on ...

    Text Solution

    |

  7. Number of solutions of the equation z^(2)+|z|^(2)=0, where z in C, is

    Text Solution

    |

  8. The number of solutions of the equation z^2+z=0 where z is a a complex...

    Text Solution

    |

  9. The centre of a square is at the origin and one of the vertex is 1-i e...

    Text Solution

    |

  10. Let za n domega be two complex numbers such that |z|lt=1,|omega|lt=1a ...

    Text Solution

    |

  11. The system of equation |z+1+i|=sqrt2 and |z|=3}, (where i=sqrt-1) ha...

    Text Solution

    |

  12. The triangle with vertices at the point z1z2,(1-i)z1+i z2 is

    Text Solution

    |

  13. Let alpha and beta be two fixed non-zero complex numbers and 'z' a var...

    Text Solution

    |

  14. The center of a square is at z=0. A is z(1), then the centroid of the ...

    Text Solution

    |

  15. If z=x+i y , then he equation |(2z-i)//(z+1)|=m represents a circle, t...

    Text Solution

    |

  16. If x^2-2xcos theta+1=0, then the value of x^(2n)-2x^n cosntheta+1, n ...

    Text Solution

    |

  17. If p^(2)-p+1=0, then the value of p^(3n) can be

    Text Solution

    |

  18. If n in Z, then (2^(n))/(1+i)^(2n)+(1+i)^(2n)/(2^(n)) is equal to

    Text Solution

    |

  19. If arg (z(1)z(2))=0 and |z(1)|=|z(2)|=1, then

    Text Solution

    |

  20. If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))...

    Text Solution

    |