Home
Class 12
MATHS
The value of the expression (1+1/omega)...

The value of the expression `(1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega)(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2))`, where `omega` is an imaginary cube root of unity, is

A

`(n(n^(2)+2))/(3)`

B

`(n(n^(2)-2))/(3)`

C

`(n(n^(2)+1))/(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ (1 + \frac{1}{\omega})(1 + \frac{1}{\omega^2}) + (2 + \frac{1}{\omega})(2 + \frac{1}{\omega^2}) + (3 + \frac{1}{\omega})(3 + \frac{1}{\omega^2}) + \ldots + (n + \frac{1}{\omega})(n + \frac{1}{\omega^2}), \] where \(\omega\) is an imaginary cube root of unity, we can follow these steps: ### Step 1: Understanding \(\omega\) The cube roots of unity are given by: \[ \omega = e^{2\pi i / 3}, \quad \omega^2 = e^{-2\pi i / 3}, \quad \text{and } \omega^3 = 1. \] Also, we know that: \[ 1 + \omega + \omega^2 = 0. \] ### Step 2: Simplifying the First Term Let's start with the first term: \[ (1 + \frac{1}{\omega})(1 + \frac{1}{\omega^2}). \] Expanding this gives: \[ 1 + \frac{1}{\omega} + \frac{1}{\omega^2} + \frac{1}{\omega \cdot \omega^2}. \] Since \(\omega \cdot \omega^2 = \omega^3 = 1\), we have: \[ 1 + \frac{1}{\omega} + \frac{1}{\omega^2} + 1 = 2 + \frac{1}{\omega} + \frac{1}{\omega^2}. \] Using \( \frac{1}{\omega} + \frac{1}{\omega^2} = \frac{\omega + 1}{\omega^2} = -1 \) (since \(1 + \omega + \omega^2 = 0\)), we find: \[ 2 - 1 = 1. \] ### Step 3: Generalizing the \(k\)-th Term Now, consider the \(k\)-th term: \[ (k + \frac{1}{\omega})(k + \frac{1}{\omega^2}). \] Expanding this gives: \[ k^2 + k(\frac{1}{\omega} + \frac{1}{\omega^2}) + \frac{1}{\omega \cdot \omega^2}. \] Again, since \(\frac{1}{\omega} + \frac{1}{\omega^2} = -1\) and \(\frac{1}{\omega \cdot \omega^2} = 1\), we have: \[ k^2 - k + 1. \] ### Step 4: Summing the Series Now we need to sum this from \(k = 1\) to \(n\): \[ \sum_{k=1}^{n} (k^2 - k + 1). \] This can be split into three separate sums: \[ \sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k + \sum_{k=1}^{n} 1. \] ### Step 5: Using Known Formulas Using the formulas for the sums: - \(\sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6}\), - \(\sum_{k=1}^{n} k = \frac{n(n + 1)}{2}\), - \(\sum_{k=1}^{n} 1 = n\). We can substitute these into our expression: \[ \frac{n(n + 1)(2n + 1)}{6} - \frac{n(n + 1)}{2} + n. \] ### Step 6: Simplifying the Expression Now, we can simplify: 1. Find a common denominator (which is 6): \[ \frac{n(n + 1)(2n + 1)}{6} - \frac{3n(n + 1)}{6} + \frac{6n}{6}. \] 2. Combine the fractions: \[ \frac{n(n + 1)(2n + 1) - 3n(n + 1) + 6n}{6}. \] ### Step 7: Final Simplification Expanding and simplifying the numerator: \[ n(n + 1)(2n + 1) - 3n(n + 1) + 6n = n(n + 1)(2n + 1 - 3) + 6n = n(n + 1)(2n - 2) + 6n. \] This simplifies further to: \[ n(n + 1)(2(n - 1)) + 6n = 2n(n + 1)(n - 1) + 6n. \] Thus, the final result is: \[ \frac{n(n^2 + 2)}{3}. \] ### Final Answer The value of the expression is: \[ \frac{n(n^2 + 2)}{3}. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

The value of the expression 2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1)/(omega))(2+(1)/(omega^(2)))+4(3+(1)/(omega^()))(3+(1)/(omega^(2)))+.......+(n+1)(n+(1)/(omega^()))(n+(1)/(omega^(2))) where omega is an imaginary cube roots of unity, is:

Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).

The value of the expression (1+(1)/(w))(1+(1)/(w^(2)))+(2+(1)/(w))(2+(1)/(w^(2)))+(3+(1)/(w))(3+(1)/(w^(2)))+......+(n+(1)/(w))(n+(1)/(w^(2))) where w is an imaginary cube root of unity

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  2. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  3. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  4. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  5. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  6. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  7. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  8. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  9. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  10. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  11. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  12. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  13. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  14. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |

  15. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |

  16. if the complex no z1 , z2 and z3 represents the vertices of an equ...

    Text Solution

    |

  17. If P,P^(') represent the complex number z(1) and its additive inverse ...

    Text Solution

    |

  18. Let A(z(1)),B(z(2)),C(z(3)) be the vertices of an equilateral triangle...

    Text Solution

    |

  19. The area of the triangle (in square units) whose vertices are i, omega...

    Text Solution

    |

  20. The complex number z satisfying |z+1|=|z-1| and arg (z-1)/(z+1)=pi/4, ...

    Text Solution

    |