Home
Class 12
MATHS
If z lies on the circle |z-1|=1, then (z...

If z lies on the circle `|z-1|=1`, then `(z-2)/z` is

A

purely real

B

Purely imaginary

C

positive real

D

hyperbola

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given condition and derive the expression for \((z-2)/z\). ### Step 1: Understand the given condition The condition given is \(|z - 1| = 1\). This means that the complex number \(z\) lies on a circle centered at \(1\) (which is the point \(1 + 0i\) in the complex plane) with a radius of \(1\). ### Step 2: Rewrite the condition The equation \(|z - 1| = 1\) can be interpreted as: \[ z - 1 = e^{i\theta} \quad \text{for } \theta \in [0, 2\pi) \] Thus, we can express \(z\) as: \[ z = 1 + e^{i\theta} \] ### Step 3: Substitute \(z\) into the expression We need to find the expression \(\frac{z - 2}{z}\): \[ \frac{z - 2}{z} = \frac{(1 + e^{i\theta}) - 2}{1 + e^{i\theta}} = \frac{e^{i\theta} - 1}{1 + e^{i\theta}} \] ### Step 4: Simplify the expression Now we simplify \(\frac{e^{i\theta} - 1}{1 + e^{i\theta}}\): - The numerator \(e^{i\theta} - 1\) can be expressed as \(e^{i\theta} - e^{0}\). - The denominator \(1 + e^{i\theta}\) is straightforward. ### Step 5: Analyze the result To analyze the expression further, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(e^{i\theta} - 1)(1 + e^{-i\theta})}{(1 + e^{i\theta})(1 + e^{-i\theta})} \] This gives: \[ = \frac{(e^{i\theta} - 1)(1 + e^{-i\theta})}{2 + e^{i\theta} + e^{-i\theta}} = \frac{(e^{i\theta} - 1)(1 + e^{-i\theta})}{2 + 2\cos(\theta)} \] ### Step 6: Determine the nature of the expression The numerator \((e^{i\theta} - 1)(1 + e^{-i\theta})\) can be analyzed to show that it is purely imaginary because it represents a rotation in the complex plane. The denominator is real and positive. ### Conclusion Thus, \(\frac{z - 2}{z}\) is purely imaginary. ### Final Answer The expression \(\frac{z - 2}{z}\) is purely imaginary. ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If z lies on the circle I z 1=1, then 2/z lies on

If z is a point on the circle |z-1|=1, then arg z =

If z ,lies on the circle |z-2i|=2sqrt(2), then the value of arg((z-2)/(z+2)) is the equal to

If z ne 0 lies on the circle |z-1| = 1 and omega = 5//z , then omega lies on

If z_(1),z_(2),……………,z_(n) lie on the circle |z|=R , then |z_(1)+z_(2)+…………….+z_(n)|-R^(2)|1/z_(1)+1/z_(2)+…….+1/z-(n)| is equal to

If |a_n|lt 1 for n=1,2,3,…and 1+a_1z+a_2z^2+…+a_nz^n=0 then z lies (A) on the circle |z|=1/2 (B) inside the circle |z|=1/2 (C) outside the circle |z|= 1/2 (D) on the chord of the circle |z|=1/2 cut off by the line Re[(1+i)z]=0

If the complex numbers z_1, z_2,.......z_n lie on te unit circle |z| = 1 then show that |z_1 + z_2 + ..... + z_n| = |z_1^(-1)1 + z_2^(-1) + ....... + z_n^(-1)|.

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. If omega is the complex cube root of unity, then the value of omega+om...

    Text Solution

    |

  2. the locus of z=i+2exp(i(theta+pi/4)) is

    Text Solution

    |

  3. If z lies on the circle |z-1|=1, then (z-2)/z is

    Text Solution

    |

  4. If a gt 0 and the equation |z-a^(2)|+|z-2a|=3, represents an ellipse, ...

    Text Solution

    |

  5. For any complex number z , find the minimum value of |z|+|z-2i|dot

    Text Solution

    |

  6. Find the greatest and the least value of |z1+z2| ifz1=24+7ia n d|z2|=6...

    Text Solution

    |

  7. For all complex numbers z1, z2 satisfying |z1| =12 and |z2-3-4i|=5, ...

    Text Solution

    |

  8. If k gt 1, |z(1)| lt k and |(k-z(1)barz(2))/(z(1)-kz(2))|=1, then

    Text Solution

    |

  9. If |z-i|=1 and arg (z) =theta where 0 lt theta lt pi/2, then cottheta-...

    Text Solution

    |

  10. If Re(z)<0 then the value of (1+z+z^2+.....+z^n) cannot exceed

    Text Solution

    |

  11. Let z(1),z(2),z(3) be three complex numbers satisfying 1/z(1)+1/z(2)+1...

    Text Solution

    |

  12. a and b are real numbers between 0 and 1 such that the points z1 =a+ i...

    Text Solution

    |

  13. If omega is a cube root of unity, then find the value of the following...

    Text Solution

    |

  14. If a ,b ,c and u ,v ,w are the complex numbers representing the vertic...

    Text Solution

    |

  15. If z=re^i theta then |e^(iz)| is equal to:

    Text Solution

    |

  16. If a complex number z lies in the interior or on the boundary of a cir...

    Text Solution

    |

  17. Let z1 and z2 be two non - zero complex numbers such that z1/z2+z2/z...

    Text Solution

    |

  18. If z(1),z(2),z(3) be vertices of an equilateral triangle occurig in th...

    Text Solution

    |

  19. Let z be a complex number satisfying |z-5i|<=1 such that amp(z) is min...

    Text Solution

    |

  20. If |z-25i| lt= 15. then |"maximum " arg(z) - "minimum " arg(z)| equals

    Text Solution

    |