Home
Class 12
MATHS
The logically equivalent proposition of ...

The logically equivalent proposition of ` p harr q` is

A

` (p ^^ q) vv ( p vv q)`

B

` (p to q) ^^ ( q to p)`

C

` ( p to q) vv ( q to p)`

D

` (p ^^ q) to (p vv q)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the logically equivalent proposition of \( p \text{ biconditional } q \) (denoted as \( p \leftrightarrow q \)), we can use a truth table. Here’s a step-by-step solution: ### Step 1: Create a Truth Table for \( p \) and \( q \) We will list all possible truth values for \( p \) and \( q \). There are four combinations: | \( p \) | \( q \) | |---------|---------| | T | T | | T | F | | F | T | | F | F | ### Step 2: Determine the Truth Values for \( p \leftrightarrow q \) The biconditional \( p \leftrightarrow q \) is true when both \( p \) and \( q \) have the same truth value (both true or both false). We can fill in the truth table for \( p \leftrightarrow q \): | \( p \) | \( q \) | \( p \leftrightarrow q \) | |---------|---------|---------------------------| | T | T | T | | T | F | F | | F | T | F | | F | F | T | ### Step 3: Analyze the Options for Logical Equivalence Now we need to check the options provided to see which one matches the truth values of \( p \leftrightarrow q \). #### Option A: \( p \land q \) | \( p \) | \( q \) | \( p \land q \) | |---------|---------|------------------| | T | T | T | | T | F | F | | F | T | F | | F | F | F | This does not match. #### Option B: \( (p \implies q) \land (q \implies p) \) First, we calculate \( p \implies q \) and \( q \implies p \): | \( p \) | \( q \) | \( p \implies q \) | \( q \implies p \) | |---------|---------|---------------------|---------------------| | T | T | T | T | | T | F | F | T | | F | T | T | F | | F | F | T | T | Now, we combine these using \( \land \): | \( p \) | \( q \) | \( (p \implies q) \land (q \implies p) \) | |---------|---------|---------------------------------------------| | T | T | T | | T | F | F | | F | T | F | | F | F | T | This matches the truth values of \( p \leftrightarrow q \). #### Option C: \( p \lor q \) | \( p \) | \( q \) | \( p \lor q \) | |---------|---------|-----------------| | T | T | T | | T | F | T | | F | T | T | | F | F | F | This does not match. #### Option D: \( \neg p \lor \neg q \) | \( p \) | \( q \) | \( \neg p \) | \( \neg q \) | \( \neg p \lor \neg q \) | |---------|---------|---------------|---------------|---------------------------| | T | T | F | F | F | | T | F | F | T | T | | F | T | T | F | T | | F | F | T | T | T | This does not match. ### Conclusion The logically equivalent proposition of \( p \leftrightarrow q \) is given by option B: \( (p \implies q) \land (q \implies p) \). ---

To find the logically equivalent proposition of \( p \text{ biconditional } q \) (denoted as \( p \leftrightarrow q \)), we can use a truth table. Here’s a step-by-step solution: ### Step 1: Create a Truth Table for \( p \) and \( q \) We will list all possible truth values for \( p \) and \( q \). There are four combinations: | \( p \) | \( q \) | |---------|---------| ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|4 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA|Exercise Exercise|40 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA|Exercise Solved MCQs|5 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The logically equvalent proposition of p harr q is

The logically equivalent proposition of p iff q is

p to q is logically equivalent to

The equivalent statement of (p harr q) is-

Which of the following is logcially equivalent to ~ ( p harr q) ?

The proposition p to ~ (p ^^ q) is

~ p ^^ q is logically equivalent to