Home
Class 12
MATHS
Statement-1 : ( p ^^ ~ q) ^^ (~ p ^^ ...

Statement-1 : ` ( p ^^ ~ q) ^^ (~ p ^^ q)` is a fallacy.
Statement -2: ` ( p to q) harr ( ~ q to ~ p)` is a tautology .

A

Statement-1 is True, Statement -2 is Ture, Statement -2 is a correct explanation for statement -3

B

Statement-1 is True, Statement -2 is True,, Statement -2 is not a correct explanation for statement -3

C

Statement -1 is True , Statement -2 is false.

D

Statement -1 is False, statement -2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze both statements and determine their truth values. ### Step 1: Analyze Statement 1 **Statement 1:** \( (p \land \neg q) \land (\neg p \land q) \) To determine if this statement is a fallacy (always false), we can create a truth table for the expression. | p | q | \( \neg p \) | \( \neg q \) | \( p \land \neg q \) | \( \neg p \land q \) | \( (p \land \neg q) \land (\neg p \land q) \) | |---|---|-------------|--------------|----------------------|----------------------|-----------------------------------------------| | T | T | F | F | F | F | F | | T | F | F | T | T | F | F | | F | T | T | F | F | T | F | | F | F | T | T | F | F | F | From the truth table, we see that \( (p \land \neg q) \land (\neg p \land q) \) is false for all combinations of truth values for \( p \) and \( q \). Therefore, Statement 1 is indeed a fallacy. ### Step 2: Analyze Statement 2 **Statement 2:** \( (p \to q) \iff (\neg q \to \neg p) \) We can also create a truth table for this expression. | p | q | \( \neg p \) | \( \neg q \) | \( p \to q \) | \( \neg q \to \neg p \) | \( (p \to q) \iff (\neg q \to \neg p) \) | |---|---|-------------|--------------|----------------|-------------------------|------------------------------------------| | T | T | F | F | T | T | T | | T | F | F | T | F | F | T | | F | T | T | F | T | T | T | | F | F | T | T | T | T | T | From the truth table, we see that \( (p \to q) \iff (\neg q \to \neg p) \) is true for all combinations of truth values for \( p \) and \( q \). Therefore, Statement 2 is a tautology. ### Conclusion - Statement 1 is a fallacy (always false). - Statement 2 is a tautology (always true). ### Final Answer - Statement 1 is true (it is a fallacy). - Statement 2 is true (it is a tautology).

To solve the problem, we need to analyze both statements and determine their truth values. ### Step 1: Analyze Statement 1 **Statement 1:** \( (p \land \neg q) \land (\neg p \land q) \) To determine if this statement is a fallacy (always false), we can create a truth table for the expression. | p | q | \( \neg p \) | \( \neg q \) | \( p \land \neg q \) | \( \neg p \land q \) | \( (p \land \neg q) \land (\neg p \land q) \) | ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA|Exercise Exercise|40 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|53 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Consider : Statement I: (p^^~q)^^(~p^^q) is a fallacy Statement II: (ptoq)harr(~q to ~p) is a tautology

Statements (p to q) harr (~q to ~p)

Statement (p ^^ q) rarr p is

The logical statement (p to q) vv (q to ~ p) is :

The statement (p to ~q) hArr (p ^^q) is a-

The statement (p to q) to [(~p to q) to q] is