Home
Class 12
MATHS
Let f:N->N, where f(x)=x+(-1)^(x-1), the...

Let `f:N->N`, where `f(x)=x+(-1)^(x-1)`, then the inverse of f is.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:N rarr N, where f(x)=x+(-1)^(x-1), then the inverse of is.

f:N to N, where f(x)=x-(-1)^(x) , Then f is

f:N to N, where f(x)=x-(-1)^(x) , Then f is

f: N rarr N , where f(x)=x-(-1)^(x) . Then f is

Let f:N rarr N given by f(x)=x+(-1)^(x+1), then

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: Let f:[0,3]to[1,13] is defined by f(x)=x^(2)+x+1 , then find f^(-1)(x) .

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: Let f:[0,3]to[1,13] is defined by f(x)=x^(2)+x+1 , then find f^(-1)(x) .

Let f :[1/2,oo)rarr[3/4,oo), where f(x)=x^2-x+1. Find the inverse of f(x).

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: f(x)=ln(x+sqrt(1+x^(2)))

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: f(x)=ln(x+sqrt(1+x^(2)))