Home
Class 12
MATHS
Dk=|2^(k-1)1/(k(k+1))sinkthetax y z2^n-1...

`D_k=|2^(k-1)1/(k(k+1))sinkthetax y z2^n-1n/(n+1)(sin((n+1)/2)thetasinn/2theta)/sintheta/2,t h e nsum_(k=1)^n D_k`

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(k=1)^(oo)k(1-(1)/(n))^(k-1)=a*n(n-1)bn(n+1)c*n^(2)d.(n+1)^(2)

If n in N, sum_(k=1)^(n)sin^(-1(x_(k))=(npi)/2 then the value of sum_(k=1)^(n)x_(k)=

If x_k = (sectheta)^(1/2^k)+ (tan theta)^(1/(2^k) and y_k = (sectheta)^(1/(2^k))-(tan theta)^(1/2^k) , then value of 3y_n prod_(k=0)^n (x_k) is equal to

If x_k = (sectheta)^(1/2^k)+ (tan theta)^(1/(2^k) and y_k = (sectheta)^(1/(2^k))-(tan theta)^(1/2^k) , then value of 3y_n prod_(k=0)^n (x_k) is equal to

If x_k = (sectheta)^(1/2^k)+ (tan theta)^(1/(2^k) and y_k = (sectheta)^(1/(2^k))-(tan theta)^(1/2^k) , then value of 3y_n prod_(k=0)^n (x_k) is equal to

If x_k = (sectheta)^(1/2^k)+ (tan theta)^(1/(2^k) and y_k = (sectheta)^(1/(2^k))-(tan theta)^(1/2^k) , then value of 3y_n prod_(k=0)^n (x_k) is equal to

If x_(k)=(sec theta)^((1)/(2^(k)))+(tan theta)^((1)/(2^(k)))quad and y_(k)=(sec theta)^((1)/(2k))-(tan theta)^((1)/(2^(k))), then value of 3y_(n)prod_(k=0)^(n)(x_(k)) is equal to

sum_(k=1)^ook(1-1/n)^(k-1)= a. n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to