Home
Class 12
MATHS
" 10.Let "f:(0,oo)rarr R" be given by "f...

" 10.Let "f:(0,oo)rarr R" be given by "f(x)=int_((1)/(x))^(x)e^(-(y'))(dt)/(t)" .Then "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let, f:(0,oo)toR be given by f(x)=int_((1)/(x))^(x)e^(-(t+(1)/(t)))(dt)/(t) Then

Let f:(0,oo)vec R be given by f(x)=int_((1)/(x))^(x)(e^(-(t+(1)/(t)))dt)/(t), then (a)f(x) is monotonically increasing on [1,oo)(b)f(x) is monotonically decreasing on (1,oo)(b)f(x) is an odd function of x on R

Let f:(0,oo) to vec R be given by f(x)=int_(1/x)^x(e^(-(t+1/t))dt)/t , then

Let f : (0,infty) rarr R be given by f(x) = int_(1/x)^(x) e^-(t + 1/t) dt/t then

Let f:(0,oo) in R be given f(x)=int_(1//x)^(x) e^-(t+(1)/(t))(1)/(t)dt , then

Let f:(0,oo)rarrRR be given by f(x)=oversetxunderset(1/x)inte^((t+1/t))dt/t Then

Let f:(0,oo)rarr RR be given by f(x)=int_(1//x)^x e^-(t+1/t) dt/t. Then (i) f(x) is monotonically increases in (1,infty) (ii)f(x) is monotonically decreases in (0.1) (iii) f(x) +f(1/x)= 0 far all x in (0,infty) (iv) f(2^x) is an odd function of x on R

Let f:[1,oo)rarr R and f(x)=x(int_(1)^(x)(e^(t))/(t)dt)-e^(x). Then (a) f(x) is an increasing function (b) lim_(x rarr oo)f(x)rarr oo(c)f'(x) has a maxima at x=e (d) f(x) is a decreasing function

Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)/(t))(1)/(t)dt , then