Home
Class 12
MATHS
[" (1) "f(x)={[(sqrt(1+px)-sqrt(1-px))/(...

[" (1) "f(x)={[(sqrt(1+px)-sqrt(1-px))/(x),," if "-1<=x<0],[(2x+1)/(x-2),," if "0<=x<=1],[(k cos x)/(pi-2x),,quad x<(pi)/(2)],[(k cos x)/(pi-2x),,quad x=(pi)/(2)],[(3tan2x)/(2x-pi),,quad x>(pi)/(2)]],[,quad x>(pi)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):} is continuous in [-1,1] then p is equal to

If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):} is continuous in [-1,1] then p is equal to

f(x)={((sqrt(1+px)-sqrt(1-px))/(x),,,-1 le x lt 0),((2x+1)/(x-2),,,0le x le 1):} is continuous in the interval [-1,1], then p equals :

If f(x) {: (=(sqrt(1+px) - sqrt(1- px))/x", if "-1/2 le x lt 0 ),(= 3x^(2) + 2x - 2 ", if " 0 le x lt 1 ):} is continuous on its domain , then : p =

[" The range of the function "f(x)=sin^(-1)((sqrt(1+x^(4)))/(1+5x^(10)))" is "],[[[-(pi)/(2)*(pi)/(2)]],[0[(pi)/(3)*(pi)/(2))],[0(0,(pi)/(2)]]]

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

tan ^(-1) ""{(sqrt(1+cos x)+sqrt(1-cos x)}/{sqrt(1+cosx)-sqrt(1-cos x)}}=(pi)/(4)+(x)/(2) , 0 lt x lt (pi)/(2)