Home
Class 10
MATHS
[3(1)/(2)x^(2)-sqrt(11x+1)=0," (i) "4x^(...

[3(1)/(2)x^(2)-sqrt(11x+1)=0," (i) "4x^(2)+kx+1],[4(14)/(x+3)-1=(5)/(x+1);x!=-3,-1," (iii) "Kx^(2)-2sqrt(5)x],[5,,abx^(2)+(b^(2)-aclx-bc=0.)]

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(2)-(sqrt(3)+1)x+sqrt(3)=0 2x^(2)+x-4=0

Which of the following are quadratic equations in x? (i)" "x^(2)-x+3=0" "(ii)" "2x^(2)+(5)/(2)x-sqrt(3)=0 (iii)" "sqrt(2)x^(2)+7x+5sqrt(2)=0" "(iv)" "(1)/(3)x^(2)+(1)/(5)x-2=0 (v)" "x^(2)-3x-sqrt(x)+4=0" "(vi)x-(6)/(x)=3 (vii)" "x+(2)/(x)=x^(2)" "(viii)" "x^(2)-(1)/(x^(2))=5 (ix)" "(x+2)^(3)=x^(3)-8" "(x)" "(2x+3)(3x+2)=6(x-1)(x-2) (xi) " "(x+(1)/(x))^(2)=2(x+(1)/(x))+3

Determine the nature of roots of the following quadratic equations: (i) 2x^(2)+5x-4=0 (ii) 9x^(2)-6x+1=0 (iii) 3x^(2)+4x+2=0 (iv) x^(2)+2sqrt2x+1=0 (v) x^(2)+x+1=0 (vi) x^(2)+ax-4=0 (vii) 3x^(2)+7x+(1)/(2)=0 (viii) 3x^(2)-4sqrt3x+4=0 (ix) 2sqrt3x^(2)-5x+sqrt3=0 (x) (x-2a)(x-2b)=4ab

Determine the nature of roots of the following quadratic equations: (i) 2x^(2)+5x-4=0 (ii) 9x^(2)-6x+1=0 (iii) 3x^(2)+4x+2=0 (iv) x^(2)+2sqrt2x+1=0 (v) x^(2)+x+1=0 (vi) x^(2)+ax-4=0 (vii) 3x^(2)+7x+(1)/(2)=0 (viii) 3x^(2)-4sqrt3x+4=0 (ix) 2sqrt3x^(2)-5x+sqrt3=0 (x) (x-2a)(x-2b)=4ab

Which of the following expressions are polynomials ? In case of a polynomial , write its degree. (i) x^(5)-2x^(3)+x+sqrt(3) (ii) y^(3)+sqrt(3)y (iii) t^(2)-(2)/(5)t+sqrt(5) (iv) x^(100)-1 (v) (1)/(sqrt(2))x^(2)-sqrt(2)x+2 (vi) x^(-2)+2x^(-1)+3 (vii) 1 (viii) (-3)/(5) (ix) (x^(2))/(2)-(2)/(x^(2)) (x) root(3)(2)x^(2)-8 (xi) (1)/(2x^(2)) (xii) (1)/(sqrt(5))x^(1//2)+1 (xiii) (3)/(5)x^(2)-(7)/(3)x+9 (xiv) x^(4)-x^(3//2)+x-3 (xv) 2x^(3)+3x^(2)+sqrt(x)-1

Find the discriminant of each of the following equations: (i) 2x^(2)-7x+6=0" "(ii)" "3x^(2)-2x+8=0 (iii) 2x^(2)-5sqrt(2)x+4=0" "(iv)" "sqrt(3)x^(2)+2sqrt(2)x-2sqrt(3)=0 (v) (x-1)(2x-1)=0" "(vi)" "1-x=2x^(2)

Find the values of k for which roots of the following equations are real and equal: (i) 12x^(2)+4kx+3=0 (ii) kx^(2)-5x+k=0 (iii) x^(2)+k(4x+k-1)+2=0 (iv) x^(2)-2(5+2k)x+3(7+10k)=0 (v) 5x^(2)-4x+2+k(4x^(2)-2x-1)=0 (vi) (k+1)x^(2)-2(k-1)x+1=0 (vii) x^(2)-(3k-1)x+2k^(2)+2k-11=0 (viii) 2(k-12)x^(2)+2(k-12)x+2=0

Solve : (i)" "((x-1)\(x-2)(x-3))/((x+1)(x+2)(x+3))" "(ii) " "(x^(4)+x^(2)+1)/(x^(2)+4x-5)lt0