Home
Class 11
MATHS
Among (i) lim(x->0)sec^(-1)(x/(sinx)) (i...

Among (i) `lim_(x->0)sec^(-1)(x/(sinx))` (ii)`lim_(x->0)sec^(-1)((sinx)/x)` (i) exists, (ii) does not exist (i) does not exist, (ii) exists both (i) and (ii) exist neither (i) nor (ii) exists

Promotional Banner

Similar Questions

Explore conceptually related problems

Among (i) lim_(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim_(xtooo) sec^(-1)((sinx)/(x)).

Among (i) lim_(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim_(xtooo) sec^(-1)((sinx)/(x)).

Among (i) lim_(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim_(xtooo) sec^(-1)((sinx)/(x)).

Lim f(x) does not exist when

lim_(x rarr0)(e^(1/x))/(e^((1)/(x)+1))(i)0(ii)1( iii) does not exist (iv) none of these

Lt_(xto0)(|sinx|)/(x) is equal to (i) 1 (ii) -1 (iii) does not exist (iv) none of these

(lim)_(x->oo)(sinx)/x equals a. 1 b . 0 c. oo d. does not exist

Among (i) underset(xtooo)limsec^(-1)((x)/(sinx))" and "(ii) underset(xtooo)limsec^(-1)((sinx)/(x)). which of the following limit exists?

Show that lim_(xto0) (e^(1//x)-1)/(e^(1//x)+1) does not exist.

Prove that : lim_(x to 0)x/abs(x) does not exist