Home
Class 12
MATHS
Let f(x)={x+1,x >0 2-x ,xlt=0 and g(x...

Let `f(x)={x+1,x >0 2-x ,xlt=0` and `g(x)={x+3,x<1,x^2-2x-2,1lt=x<2x-5,xgeq2` Find the LHL and RHL of `g(f(x))` at `x=0` and, hence, fin `lim_(x->0)g(f(x)).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={x+1,x >0 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x)={x+1,x >0 \n 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x)={x+1,x>02-x,x =2 Find the LHL and RHL of g(f(x)) at x=0 and,hence,fin lim_(x rarr0)g(f(x))

If f(x)={(-1, xlt0 ),(0, x =0),(1, x gt 0):} and g(x)=x(1-x^2), then , f(g(x)) is continuous for,

Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ^(2). Let n be the numbers of real roots of g(x) =0, then:

Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f ('(x)) ^(2). Let n be the numbers of rreal roots of g(x) =0, then:

Let g(x) = 1 + x – [x] and f(x)={:{(-1,if,xlt0),(0,if, x=0),(1,if,x gt0):} then Aax, fog(x) equals (where [ * ] represents greatest integer function).