Home
Class 11
MATHS
e^(2x)-(a-1)e^x-a ge 0 AA x in R then th...

`e^(2x)-(a-1)e^x-a ge 0 AA x in R` then the value of a will satisfy

Promotional Banner

Similar Questions

Explore conceptually related problems

e^(2x)-(a-1)e^x-ageq0AAx in R , then values of a which satisfy are. (a) a in (-oo,0) (b) a in (-oo,0] (c) a in R (d) a in (-oo,2]

e^(2x)-(a-1)e^x-ageq0AAx in R , then values of a which satisfy are. (a) a in (-oo,0) (b) a in (-oo,0] (c) a in R (d) a in (-oo,2]

if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 monotonically increases for AA x in R then the minimum value of 'a' is

if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 monotonically increases for AA x in R then the minimum value of 'a' is

if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 monotonically increases for AA x in R then the minimum value of 'a' is

Let f(x) be a function which satisfies the relation f(x+1)+f(2x+2)+f(1-x)+f(2+x)=x+1 AA x in R then value of [f(0)] is

Let a function f(x) satisfies f(x)+f(2x)+f(2-x)+f(1+x)=x,AA x in R Then find the value of f(0)

Let [x] denote the greatest integer less than or equal to x. Then, the values of x in R satisfying the equation [e^(x)]^(2) + [e^(x) + 1] - 3 = 0

" Let "f(x)" be a function which satisfies the relation "f(x+1)+f(2x+2)+f(1-x)+f(2+x)=x+1AA x in R" then value of "[f(0)|" is "