Home
Class 11
MATHS
f(x) = sin (pi/2[x] ) , [.] denotes the ...

`f(x) = sin (pi/2[x] )` , [.] denotes the greatest integer function.Dxaw graph

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) = {x} sin (pi [x]) , where [.] denotes the greatest integer function and {.} is the fraction part function , is discontinuous at

The function f(x)={x} sin (pi[x]) , where [.] denotes the greatest integer function and {.} is the fractional part function, is discontinuous at

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f : R to [-1, 1] , where f(x)=sin(pi/2[x]) (where [.] denotes the greatest integer function), then the range of f(x) is

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

Let f(x)=[x+1]sin((pi)/([x+2])), where [.] denotes the greatest integer function.Points of discontinuity of f(x) in the domain are

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is