Home
Class 12
MATHS
(1)/(148)" is "(1)/(18)sin^(2)0+cos^(2)t...

(1)/(148)" is "(1)/(18)sin^(2)0+cos^(2)theta=1

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin ^ (4) theta + cos ^ (4) theta) / (1-2sin ^ (2) theta cos ^ (2) theta) = 1

Prove the following identity: ((1)/(sec^(2)theta-cos^(2)theta)+(1)/(cos ec^(2)theta-sin^(2)theta))sin^(2)theta cos^(2)theta=(1-sin^(2)theta cos^(2)theta)/(2+sin^(2)cos^(2)theta)

If s int h eta+sin^(2)theta1=1, then prove that cos^(12)theta+3cos^(8)theta+cos^(6)theta-1=0 Given that si ln theta=1-sin^(2)theta=1-sin^(2)theta=cos^(2)theta

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

Cos[Sin^(-1)(2cos^(2)theta-1)+Cos^(-1)(1-2sin^(2)theta)]=

The value of theta lying between 0 and (pi)/(2), and satisfying ,,1+sin^(2)theta,cos^(2)theta,4sin4 thetasin^(2)theta,1+cos^(2)theta,4sin4 thetasin^(2)theta,cos^(2)theta,1+4sin4 theta]|=0