Home
Class 11
MATHS
If log(10)(x^2+x)=log(10)(x^3-x) then th...

If `log_(10)(x^2+x)=log_(10)(x^3-x)` then the product of all solutions of the equation is

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(10)(7x-9)^(2)+log_(10)(3x-4)^(2)=2 The number of real solutions of the equation

The number of solutions of the equation sinx=log_(10)x is

If (log_(10)x)^(2)-4|log_(10)x|+3=0, the product of roots of the equation is :

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x

If x_(1),x_(2)&x_(3) are the three real solutions of the equation x^(log_(10)^(2)x+log_(10)x^(3)+3)=(2)/(((1)/(sqrt(x+1-1))-(1)/(sqrt(x+1+1)))) where x_(1)>x_(2)>x_(3), then

The number of solution(s) of the equation sin x=log_(10)x is/are

Product of roots of equation x^(log_(10)x)=100x is

If (3log_(10)x+19)/(3log_(10)x-1)=2 log_(10)x+1, find solution of equation.

If (3log_(10)x+19)/(3log_(10)x-1)=2 log_(10)x+1, find solution of equation.