Home
Class 12
MATHS
" Prove that "tan^(-1)(1)/(4)+tan^(-1)(2...

" Prove that "tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=sin^(-1)(1)/(sqrt(5))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt5) .

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/(sqrt(5)))

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt(5))

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

Prove that tan^-1(1/4)+ tan^-1(2/9) = 1/2sin^-1(4/5)

Prove that tan^-1(1/4)+ tan^-1(2/9) = 1/2sin^-1(4/5)

Prove that 2tan^(-1)((1)/(2))+tan^(-1)((1)/(7))=sin^(-1)((31)/(25sqrt(2)))

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)