Home
Class 11
MATHS
[" 27."[" 27."a(1),a(2),a(3),...,a(n)" a...

[" 27."[" 27."a_(1),a_(2),a_(3),...,a_(n)" are in arithmetic progression,where "a_(i)>0" for all in,then,prove that "],[,(1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))+...+(1)/(sqrt(a_(n-1))+sqrt(a_(n)))=(n-1)/(sqrt(a_(1))+sqrt(a_(n)))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3),……,a_(n) are in AP, where a_(i) gt 0 for all i, show that (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3))) + …..+ (1)/(sqrt(a_(n-1))+ sqrt(a_(n)))= (n-1)/(sqrt(a_(1)) + sqrt(a_(n)))

If a_(1),a_(2),a_(3),a_(n) are in A.P,where a_(i)>0 for all i, show that (1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))++(1)/(sqrt(a_(n-1))+sqrt(a_(n)))=(n-1)/(sqrt(a_(1))+sqrt(a_(n)))

If a_(1),a_(2),a_(3)... are in A.P then prove that (1)/(sqrt(a)_(1)+sqrt(a)_(2))(+)/(sqrt(a)_(2)+sqrt(a)_(3))+...+(1)/(sqrt(a)_(n-1)+sqrt(a)_(n))=(n-1)/(sqrt(a)_(n)+sqrt(a)_(1))

If a_(1) , a_(2) , a_(3),"…………."a_(n) are in A.P., where a_(i) gt 0 for all i, then the value of : (1) /( sqrt(a_(1))+sqrt(a_(2)))+ (1) /( sqrt(a_(2))+sqrt(a_(3)))+"......"+(1) /( sqrt(a_(n-1))+sqrt(a_(n))) is :

Let a_(1),a_(2),a_(3),...,...,a_(49),a_(50) are in airthmetic progression. If a_(1)=4 and a_(50)=144 ,then the value of , (1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))+(1)/(sqrt(a_(3))+sqrt(a_(4)))cdots+(1)/(sqrt(a_(49))+sqrt(a_(50))) is equal to

If a_(1), a_(2), a_(3),…..a_(n) are in A.P where a_(i) gt 0, AA I then (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3)))+ …+ (1)/(sqrt(a_(n-1)) + sqrt(a_(n))) = (k)/(sqrt(a_(1)) + sqrt(a_(n))) then k=

If a_(1) ge 0 for all t and a_(1), a_(2), a_(3),….,a_(n) are in A.P. then show that, (1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))+ (1)/(sqrt(a_(n-1))+sqrt(a_(n))) = (n-1)/(sqrt(a_(1))+sqrt(a_(n)))

If a_(1), a_(2), a_(3), a_(4) are in AP, then (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3))) + (1)/(sqrt(a_(3)) + sqrt(a_(4))) is equal to