Home
Class 11
MATHS
[" If "a(1),a(2),a(3),...,a(n)" are in a...

[" If "a_(1),a_(2),a_(3),...,a_(n)" are in arithmetic progression,where "a_(i)>0" for all i,then,prove that "],[(1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))+...+(1)/(sqrt(a_(n-1))+sqrt(a_(n)))=(n-1)/(sqrt(a_(1))+sqrt(a_(n)))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3),……,a_(n) are in AP, where a_(i) gt 0 for all i, show that (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3))) + …..+ (1)/(sqrt(a_(n-1))+ sqrt(a_(n)))= (n-1)/(sqrt(a_(1)) + sqrt(a_(n)))

If a_(1),a_(2),a_(3),a_(n) are in A.P,where a_(i)>0 for all i, show that (1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))++(1)/(sqrt(a_(n-1))+sqrt(a_(n)))=(n-1)/(sqrt(a_(1))+sqrt(a_(n)))

If a_(1) , a_(2) , a_(3),"…………."a_(n) are in A.P., where a_(i) gt 0 for all i, then the value of : (1) /( sqrt(a_(1))+sqrt(a_(2)))+ (1) /( sqrt(a_(2))+sqrt(a_(3)))+"......"+(1) /( sqrt(a_(n-1))+sqrt(a_(n))) is :

If a_(1), a_(2), a_(3),…..a_(n) are in A.P where a_(i) gt 0, AA I then (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3)))+ …+ (1)/(sqrt(a_(n-1)) + sqrt(a_(n))) = (k)/(sqrt(a_(1)) + sqrt(a_(n))) then k=

If a_(1), a_(2), a_(3) ,…., a_(n) are the terms of arithmatic progression then prove that (1)/(a_(1)a_(2)) + (1)/(a_(2)a_(3)) + (1)/(a_(3)a_(4)) + ….+ (1)/(a_(n-1) a_(n)) = (n-1)/(a_(1)a_(n))

If a_(1), a_(2), a_(3), …..a_(n) is an arithmetic progression with common difference d. Prove that tan[tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))+…+tan^(-1)((d)/(1+a_(n)a_(n-1)))]=(a_(n)-a_(1))/(1+a_(1)a_(n))

If a_(1),a_(2),a_(3),..., are in arithmetic progression,then S=a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+...-a_(2k)^(2) is equal