Home
Class 12
MATHS
Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)...

Solve `y=tan^(-1)((sqrt(1+x^2)-1)/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

solve Tan^-1((sqrt(1+x^2)+1)/(x))

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))

Consider y=tan^-1((sqrt(1+x^2)+1)/x) . Put x= tan theta and show that (sqrt(1+x^2)+1)/x=tan(pi/2-theta/2) .

Simplify y=tan^(-1)(x/(1+sqrt(1-x^2)))