Home
Class 11
MATHS
If phi is the exterior angle of a regula...

If `phi` is the exterior angle of a regular polygon of `n` sides and `theta` is any constant then prove that `sintheta+sin(theta+phi)+sin(theta+2phi)+...` upto `n` terms`=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If phi be the exterior angle of a regular polygon of n sides and theta is any constant, then prove that costheta+cos(theta+phi)+cos(theta+2phi)+…+to n term =0

If phi be the exterior angle of a regular polygon of n sides and theta is any constant, then prove that costheta+cos(theta+phi)+cos(theta+2phi)+…+to n term =0

2sin(theta-phi)=sin(theta+phi)=1

If sintheta=5sin(theta+phi) then tan(theta+phi)=

If sin theta=5sin(theta+phi) then tan(theta+phi)=

cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

If sin theta+sin phi=sqrt(3)(cos phi-cos theta)), prove that sin3 theta+sin3 phi=0

If sin theta+sin phi=sqrt(3)(cos phi-cos theta), prove that sin3 theta+sin3 phi=0

If sin theta+ sin phi= a and cos theta+ cos phi= b , find : sin (theta+ phi) .

cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2) phi=