Home
Class 12
MATHS
" Prove that: "cos^(2)alpha+cos^(2)(alph...

" Prove that: "cos^(2)alpha+cos^(2)(alpha+beta)-2cos alpha cos beta cos(alpha+beta)=sin^(2)beta

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^2alpha+cos^2(alpha+beta)-2cosalphacosbetacos(alpha+beta)=sin^2beta

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

cos^(2)(alpha+beta)+cos^(2)(alpha-beta)-cos2alpha cos2beta=

Prove that sin^(2)alpha + cos^(2) (alpha + beta) + 2 sin alpha sin beta cos (alpha + beta) is independent of alpha .

If A = cos ^(2) alpha + cos ^2(alpha + beta)- 2 cos alpha cos beta cos (alpha + beta), then

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

underset is f(alpha. beta)=cos^(2)+beta cos^(2)(alpha+beta)-2cos alpha cos beta cos(alpha+beta)

Prove that: cos2 alpha cos2 beta+sin^(2)(alpha-beta)-sin^(2)(alpha+beta)=cos2(alpha+beta)

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .