Home
Class 10
MATHS
[" If "x=a sin theta" and "y=b" tan "the...

[" If "x=a sin theta" and "y=b" tan "theta." The prove that "],[(a^(2))/(x^(2))-(b^(2))/(y^(2))=1],[x^(2)-x" rexte "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a sin theta and y=b tan theta , then prove that (a^(2))/(x^(2))-(b^(2))/(y^(2))=1 .

If x=a sin theta and y=b tan theta, then prove that (a^(2))/(x^(2))-(b^(2))/(y^(2))=1

If x=a sin theta and y=b tan theta , then find the value of (a^(2))/(x^(2))-(b^(2))/(y^(2))

If x=asec theta, y=b tan theta , then prove that (d^(2)y)/(dx^(2))=-(b^(4))/(a^(2)y^(3))

If x=a sec theta,y=b tan theta, then prove that (x^(2))/(a^(2))-(y^(2))/(b^(2))=1

If x=a sin theta and y=b cos theta , then prove : (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

If x=a sec theta,y=b tan theta, prove that (d^(2)y)/(dx^(2))=-(b^(4))/(a^(2)y^(3))

x=a sin theta , y=btantheta so prove that a^2/x^2-b^2/y^2=1

If x=a(theta+sin theta),y=a(1+cos theta), prove that (d^(2)y)/(dx^(2))=-(a)/(y^(2))

If x=a sec theta+b tan theta and y=a tan theta+b sec theta, prove that: x^(2)-y^(2)=a^(2)-b^(2)