Home
Class 12
MATHS
If vec a+ vec b+ vec c= vec0, show that...

If ` vec a+ vec b+ vec c= vec0,` show that the angle `theta` between the vectors ` vec b\ a n d\ vec c` ig givne by `costheta=(| vec a|^2-| vec b|^2-| vec c|^2)/(2| vec b|| vec c|)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a+ vec b+ vec c= vec0 , show that the angle theta between the vectors vec b and vec c is given by costheta=(| vec a|^2-|b|^2-| vec c|^2)/(2| vec b|| vec c|)

If vec a+vec b+vec c=vec 0, show that the angle theta between the vectors vec b and vec c ig givne by cos theta=(|vec a|-|vec b|-|vec c|)/(2|vec b||vec c|)

If vec a+vec b+vec c=vec 0, show that the angle theta between the vectors vec b and vec c is given by cos theta=(|vec a|^(2)-|b|^(2)||vec c|^(2))/(2|vec b||vec c|)

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is (pi)/(2), then

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these