Home
Class 12
MATHS
Minimum value of f(x)=cos^(2)x+(secx)/(4...

Minimum value of `f(x)=cos^(2)x+(secx)/(4)`, `x in (-(pi)/(2),(pi)/(2))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find local maximum and minimum value of f(x)=sin^(4)x + cos^(4)x, x in[0, (pi)/(2)] .

The sum of the maximum and the minimum values of 2(cos^(-1)x)^(2)-pi cos^(-1) x+(pi^(2))/(4) is

The minimum value of f(x)-sin^(4)x+cos^(4)x,0lexle(pi)/(2) is

The minimum value of f(x)-sin^(4)x+cos^(4)x,0lexle(pi)/(2) is

Find the maximum and minimum value of f(x)=sin x+(1)/(2)cos2x in [0,(pi)/(2)]

The maximum value of the function f(x)=x sin x+cos x-(x^(2))/(4) for x in[-(pi)/(2),(pi)/(2)] is

Minimum value of cos^(2)(pi//4+x)+(sin x-cos x)^(2) =

The minimum value of cos^(2)((pi)/(4)-x)+(sin x-cos x)^(2) is

The maximum and minimum values of [4 cos x^(2)cos ((pi)/(3)+ x^(2))cos ((pi)/(3)-x^(2))] respectively are-

" The maximum value of the function "f(x)=x sin x+cos x-(x^(2))/(4)" for "x in[-(pi)/(2)*(pi)/(2)]" is "