Home
Class 12
MATHS
Lim (2x-3) (x-1). mm > 2x² + x ^ 3 =...

Lim (2x-3) (x-1). mm > 2x² + x ^ 3 =

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (x rarr1) ((2x-3) (sqrt (x) -1)) / (2x ^ (2) + x-3)

lim_ (x rarr1) ((2x-3) (sqrt (x) -1)) / (2x ^ (2) + x-3) =

lim_ (x rarr1) ((2x-1) (sqrt (x) -1)) / (2x ^ (2) + x-3)

lim_ (x rarr1) (x-3) / (x ^ (2) + 2x-4) = (lim_ (x rarr1) (x-3)) / (lim_ (x rarr1) (x ^ (2) + 2x -4))

Statement 1: lim_ (x rarr oo) ((1 ^ (2)) / (x ^ (3)) + (2 ^ (2)) / (x ^ (3)) + (3 ^ (2)) / (x ^ (3)) + ...... + (x ^ (2)) / (x ^ (3))) = lim_ (x rarr oo) (1 ^ (2)) / (x ^ ( 3)) + lim_ (x rarr oo) (2 ^ (2)) / (x ^ (3)) + ...... + lim_ (x rarr a) (x ^ (2)) / (x ^ (3)) lim_ (x rarr a) (f_ (1) (x) + f_ (2) (x) + ... + f_ (n) (x)) = lim_ (x rarr a) f_ (1) (x) + lim_ (x rarr a) f (x) + ...... + lim_ (x rarr a) f_ (n) (x)

lim_(x rarr 1) ((sqrt(x) - 1) (2x - 3))/(2x^(2) + x - 3) is :

Evaluate the following limits : Lim_( x to 1) ((2x-3)(x-1))/(2x^(2)+x-3)

lim_ (x rarr oo) ((2x-3) ^ (2) (3x + 2) ^ (3)) / ((2x + 1) ^ (5))

lim_ (x rarr-oo) ((3x ^ (4) + 2x ^ (2)) sin ((1) / (x)) + | x | ^ (3) +5) / (| x | ^ (3 ) + | x | +1)