Home
Class 12
MATHS
If x=a e^t(sint+cost) and y=a e^t(sint-c...

If `x=a e^t(sint+cost)` and `y=a e^t(sint-cost),` prove that `(dy)/(dx)=(x+y)/(x-y)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=ae^(t)(sint+cost) and y=ae^(t)(sint-cost) , then prove that (dy)/(dx)=(x+y)/(x-y) .

If x=a(t+sint),y=a(1-cost)," then "(dy)/(dx)=

If x=a(cost+tsint) and y=a(sint-tcost) , then find the value of (dy)/(dx) .

If x= sint, y= cos2t then prove that (dy)/(dx)= -4sint

If x=a(cost+tsint) and y=a(sint-tcost) , then find (d^(2)y)/(dx^(2)) at t=(pi)/(4) .

If x=sint and y=cos2t , then (dy)/(dx) =

If x=sint, y=cos 2t then prove that (dy)/(dx) =-sin t

If x = a(cost + t sint) and y = a(sint - tcost) , find (d^2y)/dx^2

Find dy/dx , when : x=e^(t)(sint+cost)andy=e^(t)(sint-cost) .