Home
Class 11
MATHS
" 5.If "a,b,c," are in A.P,then prove th...

" 5.If "a,b,c," are in A.P,then prove that: "|[x+2,x+3,x+2a],[x+3,x+4,x+2b],[x+4,x+5,x+2c]|=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a],[x+3,x+4,x+2b],[x+4,x+5,x+2c]| is:

If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a], [x+3,x+4,x+2b], [x+4,x+5,x+2c]| is(A) 0 (B) 1 (C) x (D) 2x

If a,b,c are in A.P., then the determinant |[x+2, x+3, x+2a],[x+3,x+4,x+2b],[x+4,x+5,x+2c]| is

If a, b, c, are in A.P, then the determinant |(x+2,x+3,x+2a),( x+3,x+4,x+2b ),(x+4,x+5,x+2c)| is (A) 0 (B) 1 (C) x (D) 2x

Choose the correct answer in questions 17 to 19: If a, b, c are in A.P., then the determinant [{:(x+2,x+3,x+2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c):}] is : (a) 0 (b) 1 ( c) x (d) 2x

If a,b,c, are in A.P, then the determinant,det[[x+2,x+3,x+2ax+3,x+4,x+2bx+4,x+5,x+2c]] is

If a, b , c are in A.P show that |[x+1, x+2, x+a],[ x+2, x+3, x+b],[ x+3, x+4, x+c]|=0

If a,b,c are in A.P then the determinant |{:(x+2,x+3,x+2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c):}| is …..