Home
Class 12
MATHS
[" (b) A now any "^(2)=1" and "cx^(2)+dy...

[" (b) A now any "^(2)=1" and "cx^(2)+dy^(2)=1" meet each other orthogonally."],[" (i) "ax^(2)+by^(2)=1" and "cx^(2)+dy^(2)=1" meet each other orthogonally."],[" Show that "(1)/(a)-(1)/(b)=(1)/(c)-(1)/(d)]

Promotional Banner

Similar Questions

Explore conceptually related problems

ax^2+by^2=1" and "Ax^2+By^2=1 meet each other orthogonally. (aneA,bneB,aB-bA ne0) . Show that (1)/(a)-(1)/(b)=(1)/(A)-(1)/(B) .

If two curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally,then show that (1)/(a)-(1)/(b)=(1)/(a')-(1)/(b')

If the curves ax^(2)+by^(2)=1 and cx^(2)+dy^(2)=1 intersect at right angles then show that (1)/(a)-(1)/(b)=(1)/(c)=(1)/(d)

If the curves ax^(2)+by^(2)=1 and cx^(2)+dy^(2)=1 intersect at right angles then show that (1)/(a)-(1)/(b)=(1)/(d)-(1)/(d)

If the curves ax^(2) + by^(2) =1 and a_(1) x^(2) + b_(1) y^(2) = 1 intersect each other orthogonally then show that (1)/(a) - (1)/(b) = (1)/(a_(1)) - (1)/(b_(1))

The curves ax^(2)+by^(2)=1 and Ax^(2)+B y^(2) =1 intersect orthogonally, then

If the curve ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally, then

Show the condition that the curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 should intersect orthogonally is (1)/(a)-(1)/(b)=(1)/(a')-(a)/(b)

If the curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 are orthogonally then …………

The curves 2x^(2) + 3y^(2) = 1 and cx^(2) + 4y^(2) = 1 cut each other orthogonally then the value of c is: