Home
Class 20
MATHS
[" 16."(root(4)(4)sin^(-1)(1-x)-2sin^(-1...

[" 16."(root(4)(4)sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2),pi x pi(pi)/(4 pi)arctan(pi)/(6)],[[" (A) "0,(1)/(2)," (B) "1,(1)/(2)," (C) "0," (D) "(1)/(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((cosx)/(1+sin x)) =(pi)/(4)-(x)/(2), x in (-(pi)/(2), (pi)/(2)) .

Prove that tan^(-1)((cos x)/(1+sin x))=(pi)/(4)-(x)/(2),|x in(-(pi)/(2),(pi)/(2))

Range of tan^(-1)((2x)/(1+x^(2))) is (a) [-(pi)/(4),(pi)/(4)] (b) (-(pi)/(2),(pi)/(2))(c)(-(pi)/(2),(pi)/(4)) (d) [(pi)/(4),(pi)/(2)]

cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

"sin"^(4)(pi)/(16) + "sin"^(4) (3pi)/(16) + "sin"^(4) (5pi)/(16) + "sin"^(4) (7pi)/(16)=

solve: tan^(-1) ((cos x)/(1-sin x)) = ((pi)/(4)+(x)/(2)) , (-3 pi)/(2)ltxlt(pi)/(2)

If f(x)=(1-sin^(2)x)/(1+sin^(2)x)," then "3f'((pi)/(4))-f((pi)/(4))=

arctan^(-1)((cos x)/(1-sin x))-cos^(-1)(sqrt((1+cos x)/(1-cos x)))=(pi)/(4),x in(0,(pi)/(2))

If y=cos^(-1)((1)/(2sin x)) then (d^(2)y)/(dx^(2)) at ((pi)/(4),(pi)/(4)) is