Home
Class 12
MATHS
" Show that "sin^(p)theta cos^(q)theta" ...

" Show that "sin^(p)theta cos^(q)theta" attains a maximum,when "theta=tan^(-1)sqrt((p)/(q))

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sin^(p) thetacos^(q)theta attains a maximum when theta=tan^-1sqrt((p/q))

Show that sin^(P) theta cos^(q) theta attains a maximum value, when theta = tan^(-1) sqrt((p)/(q)) .

Show that sin^(p) theta cos^(q) theta , p , q in N attains maximum value when theta = tan^(-1) sqrt((p)/(q)) . Identify if it is a global maxima or not .

Prove that the maximum value of the functions sin^(p)theta cos^(q) is at theta=tan^(-1)(sqrt((p)/(q)))

cos p theta=cos q theta,p!=q, thetn

int((sin theta-cos theta)d theta)/((sin theta+cos theta)sqrt(sin theta cos theta+sin^(2)theta cos^(2)theta))=p tan^(-1)sqrt((sin theta+cos theta)^(q)+r) where p,q,r and c are constants,then 2p+q+2r equals

if x=a cos^(3)theta sin^(2)theta and y=a cos^(2)theta sin^(3)theta and ((x^(2)+y^(2))^(p))/((xy)^(q)) is independent of theta, then (A)4p=5q(B)5p=4q(C)p+q=9(D)pq=20

Prove that for theta = tan^(-1)sqrt((p)/(q)), sin^(p)theta cos^(q)theta is maximum.

If tan theta =p/q , show that : (p sin theta-q cos theta)/(p sin theta+q cos theta)= (p^2-q^2)/(p^2+q^2) .