Home
Class 12
MATHS
The integral int[2x^[12]+5x^9]/[x^5+x^3...

The integral `int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx` is equal to- (A) `x^10 / (2(x^5 + x^3 +1)^2) ` (B) `x^5/ (2(x^5 + x^3 +1)^2) ` (C) `-x^10 / (2(x^5 + x^3 +1)^2) ` (D) `- x^5 / (2(x^5 + x^3 +1)^2) `

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(2x^12+5x^9)/((x^5+x^3+1)^3)dx is equal to: where C is an arbitrary constant.

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to: (1)(-x^(5))/((x^(5)+x^(3)+1)^(2))+C(2)(x^(5)x^(3))/(2(x^(5)+x^(3)+1)^(2))+C(3)(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C(4)(-x^(3)+x^(3))/(2(x^(5)+x^(3)+1)^(2))+C where C is an arbitrary constant.

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

x^2\ x\ \ 2y^3\ x\ \ 5x^3y^2 is equal to: (a) 10 x^2y^5 (b) 10 x^5y^2 (c) 10 x^5y^5 (d) x^5y^5

int x ^ (5) (1 + 2x ^ (3)) ^ ((5) / (3)) dx

int _ (- 1) ^ (1) (2x + 3) / (5x + 2) dx

int((2x^(12)+5x^(9))dx)/((x^(5)+x^(3)+1)^(3))

int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx=(x^(p))/(q(x^(5)+x^(3)+1)^(r))+c , then p-q-r =