Home
Class 12
MATHS
[" Let "f(x)=(sin^(-1)(1-{x})*cos^(-1)(1...

[" Let "f(x)=(sin^(-1)(1-{x})*cos^(-1)(1-{x}))/(sqrt(2{x})*(1-{x}))" then find "lim_(x rarr0^(+))f(x)" and "lim_(x rarr0^(-))f(x)" ,where "{x}" denotes the fractional "],[" part function."]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0){(1+x)^((2)/(x))}( where {x} denotes the fractional part of x ) is equal to.

lim_(x rarr0)x cos(1/x)

lim_(x rarr0)(sin x)/(x)=1

lim_(x rarr0)(cos x)/(x+1)

lim_(x rarr0)(cos x-1)/(x)

lim_(x rarr0)(1-cos x)/(x)

If I_(1)=lim_(x rarr0^(+))(sin{x})/({x}) and I_(2)=lim_(x rarr0^(+))(sin{x})/({x}), where {.} denotes the fractional function,then

The value of lim_(x rarr0)sin^(-1){x}( where {*} denotes fractional part of x ) is

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)