Home
Class 12
MATHS
" If "y=log(5)(log(5)x)+10^(3log(10)x)" ...

" If "y=log_(5)(log_(5)x)+10^(3log_(10)x)" ,thow that "(dy)/(dx)=(1)/(x log_(5)x(log_(6)5)^(2))+3x^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log_(5)(log_(5)x)+10^(3log_(10)x), show that (dy)/(dx)=(1)/(x log_(5)x(log_(e)5)^(2))+3x^(2)

5^(log_(10)x)=50-x^(log_(10)5)

If log_(5)[log_(3)(log_(2)x)]=1 , then x is:

If y=log_(10)x+log_(x)10+log_(x)x+log_(10)10,"find "(dy)/(dx) .

y=log_(2)[log_(3)(log_(5)x)] ,then x=

If y = log_(5) (log_(5)x) then dy/dx =

If log_(5)[log_(3)(log_(2)x)]=1 then x is

If y=5^(2{log_(5)(x+1)-log_(5)(3x+1)}) then (dy)/(dx) at x=0 is

If y=log_(10)x+log_(x)10+log_(x)x+log_(10)10 then dy/dx = ?

If y=log_(10)x+log_(x)10+log_(x)x+log_(10)10 , then ((dy)/(dx))_(x=10) is equal to