Home
Class 12
MATHS
" 8.If "tan^(-1)[(sqrt(1+x^(2))-sqrt(1-x...

" 8.If "tan^(-1)[(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))]=a(1)/(1)" an fus "

Promotional Banner

Similar Questions

Explore conceptually related problems

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))],|x|<(1)/(2),x!=0

Solve for x:tan^(-1)[(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))]=beta

Prove that "tan"^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=pi/(4)+1/(2)"cos"^(-1)x^(2) .

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))