Home
Class 12
MATHS
[" far "a^(2)+b^(2)+c^(2)+2abc=1],[" 7."...

[" far "a^(2)+b^(2)+c^(2)+2abc=1],[" 7."4f'au=cot^(-1)sqrt(cos2 theta)-tan^(-1)sqrt(cos2 theta)(1)/(8)" an "(1)/(1)sqrt(44)],[" anffare "f(x)sin u=tan^(2)theta],[" 8."4f(x)tan^(-1)[(sqrt(1+x^(2))-sqrt(1-x^(2)))/(1-x^(2))]=a(1)/(8)" at fus "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=tan^(-1)(1/(sqrt(cos 2 theta)))-tan^(-1)(sqrt(cos 2 theta)) , then sin u=

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

If u= cot ^(-1) (sqrt(cos 2 theta)) -tan ^(-1)(sqrt(cos 2 theta)) , then prove that : sin u = tan^(2) theta .

If u=cot^(-1)[sqrt(cos2 theta)]-tan^(-1)[sqrt(cos2 theta)] then show that,cos ecu=cot^(2)theta

If phi=cot^(-1)sqrt(cos2theta)-tan^(-1)sqrt(cos2theta) , then show that, sin phi=tan^(2)theta .

tan(2tan^(-1)sqrt((1+cos theta)/(1-cos theta)))+tan theta=0

If u = cot^(-1) sqrt(cos 2theta) - tan^(-1) sqrt(cos 2theta) prove that sin u = tan^(2) theta . .

Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , then the value of sin u is