Home
Class 12
MATHS
cos^(-1)((3)/(5)cos x+(4)/(5)sin x)," wh...

cos^(-1)((3)/(5)cos x+(4)/(5)sin x)," where "-(3 pi)/(4)<=x<=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the simplified form of cos^(-1)(3/5cosx+4/5sinx),"where "x in[(-3pi)/4,pi/4] .

Simplify cos^-1(3/5cosx + 4/5 sin x), x in (-(2pi)/(3) , (pi)/(4))

int(sin^(3)x cos^(5)x-cos^(3)x sin^(5)x)ln(sin2x)*dx=f(x), where f((pi)/(4))=-(1)/(256) then the value of f((5 pi)/(4)) equals

If cos ^(-1)((3)/(5))-sin ^(-1)((4)/(5))=cos ^(-1) x, then x=

3cos x+4sin x=5

cos^(-1)((sin x+cos x)/(sqrt(2))),(pi)/(4) lt x lt (5pi)/4

Prove that cos^-1 ((sin x + cos x )/(sqrt2)) = x - (pi/4), (pi/4) le x le ((5pi)/4)

Prove that : int_(0)^(pi//2) (cos^(5))/(sin^(5) x+cos^(5) x)dx= (pi)/(4)

Prove that : int_(0)^(pi//2) (cos^(5))/(sin^(5) x+cos^(5) x)dx= (pi)/(4)

int(sin x-cos x)/(sqrt(1-sin2x))e^(sin x)cos xdx, where [x in((pi)/(4),(3 pi)/(4))]