Home
Class 12
MATHS
If alpha,beta,gamma are the roots of x^3...

If `alpha,beta,gamma` are the roots of `x^3-2x^2+3x-4=0` then `sum alphabeta(alpha+beta)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of x^(3)-2x^(2)+3x-4=0 then sum alpha beta(alpha+beta)=

If alpha ,beta, gamma are the roots of 2x^(3)-2x-1=0 then (sum alpha beta)^(2)

If alpha , beta , gamma are the roots of 2x^3 -2x -1=0 the sum ( alpha beta)^2 =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha,beta,gamma are the roots of x^(3)-2x^(2)+3x-4=0 then the value of alpha^(2)beta^(2)+beta^(2)gamma^(2)+gamma^(2)alpha^(2) is

If alpha,beta,gamma are the roots of x^(3)+2x^(2)+3x+8=0 then (alpha+beta)(beta+gamma)(gamma+alpha)=

If alpha,beta, gamma are the roots of 4x^(3) - 6x^(2) + 7x + 3 = 0 then alpha beta + alpha beta + alpha gamma =

If alpha,beta,gamma are the roots of x^(3)-3x^(2)+4x-7=0, then (alpha+2)(beta+2)(gamma+2)=