Home
Class 10
MATHS
If the point P(3,4) is equidistant from ...

If the point `P(3,4)` is equidistant from the points `A(a+b,b-a` and `B(a-b,a+b)`, then prove that `3b-4a=0`

Text Solution

Verified by Experts

`AP^2=(a+b-3)^2+(b-a-4)^2`
`=(a+b)^2-6(a+b)+a+(b-a)^2-8(b-a)+16`
`BP^2=(a-b-3)^2+(a+b-4)^2`
`=(a-b)^2-6(a-b)+a+(a+b)^2-8(a+b)+16`
`AP=BP`
`AP^2=BP^2`
`-6(a+b)-8(b-a)=-6(a-b)-8(a+b)`
`8(a+b-b+a)+6(a-b-a-b)=0`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If the point P(x,y) be equidistant from the points A(a+b,b-a) and B(a-b,a+b), then prove that bx=ay

If the point P(x,y) be equidistant from the points A(a+b,b-a) and B(a-b,a+b), then prove that bx=ay

If the point P(p,q) is equidistant from the points A(a+b,b-a)and B(a-b,a+b), then

If the point (x, y) is equidistant from the points (a+b, b-a) and (a-b, a+b), then prove that bx=ay.

If the point (x,y) be equidistant from the points ( a+b, b-a) and (a-b, a+b) then prove that bx=ay.

If the point P(x,y) be equidistant from the points A(a+b,a-b) and B(a-b,a+b), then

If the point P(x, y) is equidistant from the points A(a + b, b-a) and B(a-b, a + b). Prove that bx = ay.

If the point P(x,y) is equidistant from the points A(a+b,b-a) and B(a-b,a+b). Prove that bx=ay.

If the point P(x, y) be equidistant from the points A(a+b, a-b) and B(a-b, a+b) then