Home
Class 12
MATHS
cos^(-1)(a)/(x)-cos^(-1)(b)/(x)=cos^(-1)...

cos^(-1)(a)/(x)-cos^(-1)(b)/(x)=cos^(-1)(1)/(b)-cos^(-1)(1)/(a)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sec^(-1)x=cos ec^(-1)y, then cos^(-1)((1)/(x))=cos^(-1)((1)/(y))=

Let A=[(cos^(- 1)x,cos^(- 1)y,cos^(- 1)z),(cos^(- 1)y,cos^(- 1)z,cos^(- 1)x),(cos^(- 1)z,cos^(- 1)x,cos^(- 1)y)] such that |A| = 0 , then maximum value of x + y + z is

The value of tan(sin^(-1)(cos(sin^(-1)x)))tan(cos^(-1)(sin(cos^(-1)x))), where x in(0,1) is equal to 0(b)1(c)-1(d) none of these

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 tan^(-1) x , then x is

if cos^(-1)((1-a^(2))/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=2tan^(-1)x then x is: