Home
Class 12
MATHS
" If "y=[tan^(-1)x]^(2)," prove "" that ...

" If "y=[tan^(-1)x]^(2)," prove "" that "(1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(tan^(-1)x)^(2), then prove that (1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)=2

If y=(tan^(-1)x)^(2) , show that (x^(2)+1)^(2)y_(2)+2x(x^(2)+1)y_(1)=2 .

If y=sin(mtan^(-1)x) , prove that : (1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)+m^(2)y=0 .

If y= (tan^(-1)x)^(2) , show that (x^(2)+1)^(2) y_(2)+2x(x^(2)+1)y_(1)=2 .

If y= (tan^(-1)x)^(2) , show that (x^(2)+1)^(2) y_(2)+2x(x^(2)+1)y_(1)=2 .

If y= (tan^(-1)x)^(2) , show that (x^(2)+1)^(2) y_(2)+2x(x^(2)+1)y_(1)=2 .

If y=(tan^(-1)x)^(2) show that (x^(2)+1)^(2)y_(2)+2x(x^(2)+1)y_(1)=2