Home
Class 12
MATHS
" 4."(1-x^(2))(1-y)dx=xy(1+y)dy...

" 4."(1-x^(2))(1-y)dx=xy(1+y)dy

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation (1-x^(2))(1-y)dx=xy(1+y)dy is

Solve the following differential equations. (1-x^2)(1-y)dx=xy(1+y)dy .

(1-x^2)(1-y)dx=x y(1+y)dy y 4. (1 - x?) (1 - y) dx = xy (1 + y) dy

(1-xy+x^(2)y^(2))dx=x^(2)dy

Solve the differential equation: (1-x^(2))(1-y)backslash dx=xy(1+y)dy

(x^(2)-1)/(y-1)=xy(dy)/(dx)

if y=(sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=xy+1

(1+x^(2))(dy)/(dx)+2xy=(1)/(1+x^(2));y=0 if x=1

If (2xy-y^(2)-y)dx = (2xy+x-x^(2))dy and y(1)=1 ,then the value of y(-1) is

Solve the following differential equations (i) (1+y^(2))dx = (tan^(-1)y - x)dy (ii) (x+2y^(3))(dy)/(dx) = y (x-(1)/(y))(dy)/(dx) + y^(2) = 0 (iv) (dy)/(dx)(x^(2)y^(3)+xy) = 1