Home
Class 11
MATHS
lim(->oo)(1^3+2^3++n^3)/((n-1)^4)...

`lim_(->oo)(1^3+2^3++n^3)/((n-1)^4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(n->oo)(1^3+2^3+ n^3)/((n-1)^4)

Evaluate the following limit: (lim)_(n rarr oo)(1^(3)+2^(3)+n^(3))/((n-1)^(4))

Evaluate : lim_(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim_(n->oo) (1^3+2^3+...+n^3)/n^5

lim_(n->oo) [ (1^3+ 2^3 + 3^3 -------n^3)/n^4]

lim_(n to oo) [ 1^2/n^3 + (2^2)/(n^3) + …+ ((n-1)^2)/(n^3)]

Evaluate lim_(n->oo)[1^2/(n^3+1^3) + 2^2/(n^3+2^3) +3^2/(n^3+3^3)+…+1/(2n)]

S1: lim_(n->oo) (2^n + (-2)^n)/2^n does not exist S2: lim_(n->oo) (3^n + (-3)^n)/4^n does not exist

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) ++ n ^ (3)) / ((n-1) ^ (4))