Home
Class 11
MATHS
lim(n->oo)(1/3+1/(3^2)+1/(3^3)++1/(3^n))...

`lim_(n->oo)(1/3+1/(3^2)+1/(3^3)++1/(3^n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(n->oo)[1^2/(n^3+1^3) + 2^2/(n^3+2^3) +3^2/(n^3+3^3)+…+1/(2n)]

Evaluate the following limit: (lim)_(n->oo)(1^3+2^3+ n^3)/((n-1)^4)

lim_ (n rarr oo) ((1) / (2) +1+ (3) / (2) + ... + (n) / (2)) / (25n ^ (2) + n + 3)

the value of lim_(n->oo) {1/(n^3+1)+4/(n^3+1)+9/(n^3+1)+.................+n^2/(n^3+1)}

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

evaluate lim_ (n rarr oo) [(1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (2)) + ......... + (1) / (3 ^ (n))]

lim_(n to oo) [ 1^2/n^3 + (2^2)/(n^3) + …+ ((n-1)^2)/(n^3)]

lim_ (n rarr oo) (1+ (1) / (2) + (1) / (2 ^ (2)) + (1) / (2 ^ (3)) + ...... (1) / (2 ^ (n))) / (1+ (1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (3)) ...... (1) / (3 ^ (n)))

lim_ (n rarr oo) [(1 ^ (2)) / (n ^ (3) + 1 ^ (3)) + (2 ^ (2)) / (n ^ (3) + 2 ^ (3)) + (3 ^ (2)) / (n ^ (3) + 3 ^ (3)) + ... * (1) / (2n)]