Home
Class 11
MATHS
lim(x->oo)(x^4+7x^3+46 x+a)/(x^2+6) wher...

`lim_(x->oo)(x^4+7x^3+46 x+a)/(x^2+6)` where a is `a` non-zero real number.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)(x^4+7x^3+46 x+a)/(x^4+6) where a is a non-zero real number.

If lim_(x to 0) ({(a-n)nx - tan x} sin nx)/x^(2) = 0 , where n is non-zero real number, then a is equal to

If lim_(x rarr 0)(((a-n)nx-tanx)sinnx)/x^2=0 , where n is non zero real number, then a is equal to:

Let f(x)=int_(-x)^(x)(t sin at + bt +c) dt, where a,b,c are non-zero real numbers , then lim_(x rarr0) (f(x))/(x) is

Let f(x)=int_(-x)^(x)(t sin at + bt +c) dt, where a,b,c are non-zero real numbers , then lim_(x rarr0) (f(x))/(x) is

Let f(x)=int_(-x)^(x)(t sin at + bt +c) dt, where a,b,c are non-zero real numbers , then lim_(x rarr0) (f(x))/(x) is

lim_(x->oo)(e^(11x)-7x)^(1/(3x))

For a certain value of 'c' lim _(x to -oo) [(x ^(5) +7x^(4)+2 )^(c ) -x] is finite and non-zero. Then the vlaue limit is :

Solve lim_(x->oo) (x^2-4)/((x-2)^2.(x+7))

For a certain value of 'c' lim _(x to oo) [(x ^(5) +7x^(4)+2 )^(c ) -x] is finite and non-zero. Then the value of limit is :