Home
Class 12
MATHS
If (x-a)^2+(y-b)^2=c^2 , for some c" ">"...

If `(x-a)^2+(y-b)^2=c^2` , for some `c" ">" "0` , prove that `([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2))` is a constant independent of a and b.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x-a)^(2)+(y-b)^(2)=c^(2) , for some c gt 0 , prove that ([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2)+(y-b)^(2)=c^(2) , for some c gt 0 , prove that ([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2)+(y-b)^(2)=c^(2) , for some c gt 0 , prove that ([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2)+(y-b)^(2)=c^(2) , for some c gt 0 , prove that ([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2) + (y-b)^(2) = c^(2) , for some c gt 0 , prove that ([1 + ((dy)/(dx))^(2)]^((3)/(2)))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

if (x-a)^2+(y-b)^2=c^2 , for some c>0 prove that [1+(dy/dx)^2]^(3/2) /((d^2y)/(dx^2)) is constant independent of a and b

If (x-a)^(2)+(y-b)^(2)=c^(2) for some for some prove that prove that ([1+((dy)/(dx))^(2)]^((3)/(2)))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2)+(y-b)^(2)=c^(2) , then prove that ([1+((dy)/(dx))^(2)]^(3//2))/((d^(2)y)/(dx^(2))) is a constant and independent of a and b.