Home
Class 12
MATHS
Prove that [lim(x to 0)(sinx)/(x)]=0, wh...

Prove that `[lim_(x to 0)(sinx)/(x)]=0,` where `[.]` represents the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.