Home
Class 12
MATHS
The number of functions f: {1,2, 3,... n...

The number of functions `f: {1,2, 3,... n}-> {2016, 2017}`, where ne N, which satisfy thecondition f1)+f(2)+ ...+ f(n) is an odd number are

Promotional Banner

Similar Questions

Explore conceptually related problems

If functions f:{1,2,…,n} rarr {1995,1996} satisfying f(1)+f(2)+…+f(1996)=odd integer are formed, the number of such functions can be

If functions f:{1,2,…,n} rarr {1995,1996} satisfying f(1)+f(2)+…+f(1996) = odd integer are formed, the number of such functions can be

If functions f:{1,2,…,n} rarr {1995,1996} satisfying f(1)+f(2)+…+f(1996)=odd integer are formed, the number of such functions can be

If functions f:{1,2,…,n} rarr {1995,1996} satisfying f(1)+f(2)+…+f(1996)=odd integer are formed, the number of such functions can be

Find the natural number a for which sum_(k=1) ^(n)f(a+k)= 16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural numbers x,y and further f(1)=2 .

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x).f(y) for all natural numbers and also f(1)=2

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x,y and,further,f(1)=2.

The natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x)*f(y) for all natural numbers x,y and further f(1)=2 is

The value of natural number 'a' for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) , where the function satisfies the relation f(x+y)=f(x).f(y) for all natural numbers x, y and further f(1)=2 is

Consider a function f(n) defined for all n in N. The function satisfies the following two condition (i) f(1) + f(2) +f(3)+.....to oo =1 (ii) f(n) = {(1-p)p^(-1)}(f(n+1)+f(n+2)+....+oo), where 0ltplt1 the f(2) is equal to