Home
Class 12
MATHS
Find domain for f(x)=sqrt(cos (sin x))...

Find domain for `f(x)=sqrt(cos (sin x))`

Text Solution

Verified by Experts

`f(x) = sqrt(cos(sinx))` is defined if
`cos(sinx) ge 0`

As we know, `-1 le sin x le 1` for all x.
So, `cos theta ge 0`
` " " ` (Here, `theta=sin x` lies in the first and fourth quadrants)
i.e., ` cos(sin x) ge 0` for all x
i.e., ` x in R`
Thus, the dimain f(x) is R.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of f(x)(sqrt((1-sin x)))/((log)_(5)(1-4x^(2)))+cos^(-1)(1-{x})

The domain of f(x)=sqrt(cos(sin x))+sqrt(log_(x){x}) where {x} denotes fractional part of x .

Find domain for, f(x)=cos^(-1)x .

find the domain and range of f(x)=sqrt(cos(sin x))+sin^(-1)((1+x^(2))/(2x))

Find the domain of f(x)=sqrt(sin x)+sqrt(16-x^(2))

Domain of fuction f(x)=sqrt(cos x)

Find the domain of f(x)=sqrt(x-3)

Find the domain of f(x)=sqrt(cos^(-1)x-sin^(-1)x)

Find the domain of f(x)=sqrt(cos^(-1)x-sin^(-1)x)